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Abstract. In this paper we present a novel false colouring-based visual saliency algo-

rithm and illustrate how it is used in the situated language interpreter (SLI) system to
ground a reference resolution framework for natural language interfaces to 3-D simu-
lated environments. The visual saliency algorithm allows us to dynamically maintain a

model of the evolving visual context. The visual saliency scores associated with the
elements in the context model can be used to resolve underspecified references.
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1. Introduction

Many modern computer applications share a visualised virtual space
with the user: graphics design programs, computer games, navigation
aids etc.1 Such applications are often ideal candidates for natural lan-
guage interfaces that allow users to refer to and manipulate objects in
the shared application domain. In these applications the human user
interacts with the system using situated language. Situated language is
spoken from a particular point of view within a physical or simulated
context (Byron, 2003). The goal of the situated language interpreter
(SLI)2 project is to develop a natural language interpretive framework
for natural language virtual reality (NLVR) systems. An NLVR system
is a computer system that allows a user to interact with simulated 3-D
environments through a natural language interface.

The interpretation of referring expressions against a changing con-
text is one of the most important tasks in NLVR systems. Referring
expressions come in a variety of surface forms including: definite
descriptions, indefinites, pronouns, demonstratives. Each referring
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expression introduces a representation into the semantics of its utter-
ance and this representation must be bound to an element in the context
in order for the utterance’s interpretation to be fully resolved. From a
computational perspective reference resolution involves two main tasks:

1. Creating and maintaining a model of the evolving discourse context
(DC) (this model should contain representations of all the objects
that are available for reference and their properties).

2. Matching the representation introduced by a given referring expres-
sion to an element (or elements) in the set of possible referents pro-
vided by the DC.

‘The DC has traditionally been thought of as a discourse history, and
most computational processes accumulate items into this set only using
linguistic events as input’ (Byron, 2003, p. 3). However, for visually
grounded discourse a purely linguistically driven DC model is not
adequate. Psycholinguistic studies (Spivey-Knowlton et al., 1998) have
demonstrated that the interpretation of language in a shared visual
domain is dependent on the visual context:

Given these results, approaches to language comprehension that
assign a central role to encapsulating linguistic subsystems are unlikely
to prove fruitful. More promising are theories in which grammatical
constraints are integrated into processing systems that coordinate
linguistic and non-linguistic information as the linguistic input is
processed. (Spivey-Knowlton et al., 1998, pp. 211–212).

Furthermore, in NLVR contexts it has been found that:

Users expect the system to have full perceptual knowledge of any
graphical elements produced by it . . . [consequently] a visual history,
analogous to the discourse history, must be accumulated (Byron,
2003, p. 6).

Following these results, we argue that the ability of NLVR systems to
interpret referring expressions is greatly improved if they maintain a DC
that models the evolving visual context as well as the linguistic context.
In order to model the flow of information to the user from the visual
context, we have developed and implemented a visual saliency algorithm
that works in real-time and across different and changing simulated
environments. Unlike previous NLVR systems (Winograd, 1973; Andre
et al., 1988; Herzog, 1997; Smith et al., 1997; Fuhr et al., 1998; Klipple
and Gurney, 1999; Goldwater et al., 2000; Kelleher et al., 2000; Kievit
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et al., 2001; Jording and Wachsmuth, 2002) visual salience is a crucial
component in reference resolution in the SLI system. This paper de-
scribes this algorithm and illustrates how it is used to resolve references.

Section 2 looks at the core results regarding the distributional
properties of passive perception acuity and active attention. Section 3
reviews previous computational work including connectionist, ray-
casting and false colouring-based approaches to modelling vision. Sec-
tion 4 presents the SLI false colouring-based visual saliency algorithm
and contrasts it with previous false colouring-based approaches (Noser
et al., 1995; Kuffner and Latombe, 1999) and (Peter and O’Sullivan,
2002). Section 5 shows how the SLI system uses visual salience to re-
solve ambiguous or underspecified references. Section 6 concludes.

2. Perception and Attention

Although visual perception seems effortless, at any given moment, the
visual environment presents far more information than can be pro-
cessed. To cope with this potential overload the brain is equipped with a
set of attentional mechanisms that regulate the processing of visual
stimuli by selecting regions within the visual buffer for detailed pro-
cessing. Landragin et al. (2001) lists some of these mechanisms: visual
familiarity, intentionality, an object’s physical characteristics, and the
structure of the scene. At the most basic level, these mechanisms can be
categorised as being active or passive selectors.

The eye acts as a passive selector: high-resolution information about
the retinal image is preserved only at the centre of gaze. The fovea is a
shallow pit in the retina which is located directly opposite the pupil,
consisting of cones and is the site of highest visual acuity, the ability to
recognise detail. Visual acuity ‘drops 50% when an object is located
only 18 from the centre of the fovea and an additional 35% when it is 88
from the centre’ (Forgus and Melamed, 1976, p. 228).

However, even with the filtering of information achieved through
passive attentional processes there is still far more information in the
visual field than can be processed by the brain (Chum and Wolfe, 2001).
Perceivers are active seekers and processors of information. Posner et al.
described attention as a ‘spotlight that enhances the efficiency of the
detection of events within its beam’ (1980, p. 172).

Although the spotlight metaphor is useful for describing how active
attention is deployed across space, it has some drawbacks. For one, it
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implies an even distribution of attention at every point within the area
the spotlight falls upon when in fact, similar to visual acuity, ‘the spatial
distribution of attention follows a gradient with decreased effects of
attention with increased eccentricity from its focus’ (Chum and Wolfe,
2001, p. 276). Attention is greatest at a single point in the visual buffer
and drops of gradually from that point.

3. Previous Computational Work

Section 2 examined some of the aspects of perception that pertain to
modelling vision, in particular how visual attention affects awareness of
what is perceived and how the amount of attention paid to a particular
location in the visual buffer is dependent on the distance between that
location and the focus of attention.

Many computational models of vision attention have been devel-
oped, see Koch and Itti (2001) and Heinke and Humphreys (2004) for
recent reviews. However, most of these models are not suitable for
NLVR systems as they have a connectionist or neural net architecture
and consequently require training. As a result, these models are re-
stricted to the domains described by or sufficiently similar to the
training set given to the system. For example, connectionist naviga-
tional systems trained with images from the inside of a factory would
need to be retrained to handle a forest environment. A system that
requires retraining when shifting from one visual domain to another is
not suitable as a model of rendered environments which may change
drastically from program to program or even within the one applica-
tion.

Alternative models of visual perception use 3-D graphics techniques.
These models can be classified based on the graphics techniques they
use: ray casting and false colouring. Tu and Terzopoulos (1994a, b)
implemented a realistic virtual marine world inhabited by autonomous
artificial fish. The model used a graphics technique called ray casting to
determine if an object met the visibility conditions. Ray casting can be
functionally described as drawing an invisible line from one point in a 3-
D simulation in a certain direction, and then reporting back all the 3-D
object meshes this line intersected and the coordinates of these inter-
sections. It is widely used in offline rendering of graphics; however, it is
computationally expensive and for this reason is not used in real-time
rendering.
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Another graphics-based approach to modelling vision was proposed
in (Noser et al., 1995). This model was used as a navigation system for
animated characters. The vision module consists of scanning the image
that results from a modified version of the world fed into the system’s
graphics engine. Briefly, each object in the world is assigned a unique
colour or ‘vision-id’ (Noser et al., 1995, p. 149). This colour differs from
the normal colours used to render the object in the world; hence the
term false colouring. An object’s false colour is only used when ren-
dering the object in the visibility image off-screen, and does not affect
the renderings of the object seen by the user, which may be multi-
coloured and fully textured. At specified time intervals, a model of the
character’s view of the world using the false colours is rendered. Once
this rendering is finished, the viewport3 is copied into a 2-D array along
with the z-buffer4 values. By scanning the array and extracting the pixel
colour information, a list of the objects currently visible to the animated
character can be obtained. Kuffner and Latombe (1999) proposed a
navigation behavioural system that used false colouring synthetic vi-
sion. Peter and O’Sullivan (2004) also used a false-colouring approach
to modelling vision; however they integrated their vision model as part
of a goal driven memory and attention model which directed the gaze of
autonomous virtual humans.

4. The SLI Visual Saliency Algorithm

The basic assumption underpinning the SLI visual saliency algorithm is
that an object’s prominence in a scene is dependent on both its centrality
within the scene and its size. The algorithm is based on the false col-
ouring approach introduced in Section 3. Each object is assigned a
unique ID. In the current implementation, the ID number given to an
object is simply 1+ the number of elements in the world when the
object is created. A colour table is initialised to represent a one-to-one
mapping between object IDs and colours.5 Each frame is rendered
twice: firstly using the objects’ normal colours, textures and shading.
This is the version that the user sees. The second rendering is off-screen.
This rendering uses the unique false colours and flat shading. The size of
the second rendering does not need to match the first. Indeed, scaling
the image down increases the speed of the algorithm as it reduces the
number of pixels that are scanned. In the SLI system the false colour
rendering is 200� 50 pixels, a size that yields sufficient detail (by com-
parison, the fully coloured, textured and shaded on-screen rendering is
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400� 300 pixels). After each frame is rendered, a bitmap image of the
false colour rendering is created. The bitmap image is then scanned and
the visual salience information extracted. Figure 1 illustrates the normal
rendering of a sample scene from the SLI system and Figure 2 illustrates
the 200� 150 false colour rendering of the same scene.

To model the size and centrality of the objects in the scene, the SLI
system assigns a weighting to each pixel using equation (1). In this
equation, P equals the distance between the pixel being weighted and
the centre of the image, and M equals the maximum distance between
the centre of the image and the point on the border of the image furthest

Figure 2. The false colour rendering of the scene in Figure 1.

Figure 1. A normal rendering of a scene in the SLI domain.
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from the centre; i.e., in a rectangular or square image, M is equal to the
distance between the centre of the image and one of the corners of the
image.

Weighting ¼ 1� P

Mþ 1

� �
ð1Þ

This equation normalises the pixel weightings between 0 and 1.
Figure 3 illustrates the distribution of pixel weightings assigned using
equation (1). It is evident that the closer a pixel is to the centre of the
image the higher its salience.

After weighting the pixels, the SLI system scans the image and, for
each object in the scene, sums the weightings of all pixels that are col-
oured using an object’s unique colour ID. Finally, the summed pixel
weighting for each object in the scene is normalised between 0 and 1 by
dividing it by the maximum summed pixel weight ascribed to an object
in the scene. This normalised value is the relative visual salience of the
object in the scene. Figure 4 gives the SLI visual saliency algorithm.

Everything else being equal, this algorithm ascribes larger objects a
higher saliency than smaller objects since they cover more pixels and
objects which are more central to the view will be rated higher than
objects at the periphery of the scene as the pixels the former cover will
have a higher weighting. The algorithm results in a list of the currently
visible objects, each with an associated saliency rating. Figure 5 illus-
trates the relationship between the false colour rendering of a scene and
the weightings ascribed to the pixels in the viewport.

Figure 3. The weighting assigned to the pixels in the viewport using Equation (1). The
darker the pixels the lower the weighting. Weightings range from 0 to 1.
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Figure 4. The SLI visual saliency algorithm.

Figure 5. An overlay of the false colour rendering of Figure 1 on the distribution of
pixel weightings.
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It is important to note that the scanning process in the SLI visual
salience algorithm differs from those in the previous false colour based
synthetic vision models (Noser et al., 1995; Kuffner and Latombe, 1999;
Peter and O’Sullivan, 2002). The previous false colouring algorithms
simply recorded whether the object had been rendered or not. The SLI
algorithm records whether an object has been rendered and ascribes
each object a relative prominence within the scene. It is this difference
that allows the SLI system to rank the objects based on their visual
salience. We do not claim that this algorithm accommodates all the
perceptual factors that impact on visual salience (cf. the list identified by
Landragin et al. (2001)). However, it defines a reasonable model of
visual saliency that operates fast enough for real-time systems with
changing environments. Furthermore, by using a false colouring algo-
rithm to model visual salience our algorithm naturally accounts for the
effects of partial object occlusion.

An implicit assumption underpinning the pixel weighting distribution
used by the algorithm is that the user’s attention is focused on the centre
of the image. In the SLI system, a command such as look at the green
house has the effect of updating the viewport such that the referent of the
green house occupies centre position in the updated viewport. An
alternative, more sophisticated approach is to leverage the tight cou-
pling between gaze and visual attentional focus using eye tracking
technology to compute the location of the user’s gaze at each scene
rendering. Using such eye tracking information the distribution of the
pixel weightings can be modified to reflect the user’s gaze position as the
maximum of the salience distribution by setting M equal to the maxi-
mum distance between the coordinates of the user’s gaze and the edge of
the viewport and measuring P as the distance between the pixel being
weighted and the coordinates of the user’s gaze.

In the SLI system, we have integrated the information created by the
visual salience algorithm with a model of user input discourse. Using
this information the SLI system is able to define a local context for the
interpretation of a given exophoric6 reference. When a reference is made
to an object in the visual environment the system is able to restrict the
set of objects it considers as candidate referents to those that are cur-
rently in the view frustrum or that the user has seen. A further
advantage of this approach is that the visual salience scores associated
with the objects in the context model allows the system to adjudicate
between candidate referents when resolving ambiguous references. In
Section 5 we will discuss this application of the visual saliency algorithm
in more detail.
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5. Using Visual Salience to Resolve Ambiguous References

Since Russell (1905), there has been a debate concerning the singularity
constraint associated with definite descriptions. The constraint requires
that for felicitous use of a definite description there should be one, and
only one, candidate referent in the context of the utterance. An
ambiguous or underdetermined reference is a reference that breaks the
singularity constraint; i.e., there is more than one candidate referent.
However, it has been shown in psycholinguistic experiments that sub-
jects can easily resolve ambiguous or underdetermined references (Duwe
and Strohner, 1997). ‘In order to identify the intended referent under
these circumstances, subjects rely on perceptual salience as well as on
pragmatic assumptions about the speaker’s communicative goals’
(Duwe and Strohner, 1997, p. 6).

An advantage of using a visual saliency model as an input to an
NLVR system’s context model is that the visual salience scores associ-
ated with the objects in the context model allows the system, in many
instances, to adjudicate between candidate referents when resolving
underspecified or linguistically ambiguous references, as illustrated be-
low. Given Figure 6 as the visual context, the referring expression the
house in make the house wider, is an example of an ambiguous use of a
definite description. This is because there is more than one object in the
context that fulfills the linguistic description of the expression’s referent.

However, in this instance the SLI system can utilise the visual sal-
iency score associated with each of the candidates as a probability of the

Figure 6. A scene containing three houses.
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candidate being the referent for the expression. In this case, the SLI
system ascribes the house in the foreground a normalised visual salience
of 1.0000 and each of the houses in the background a normalised visual
salience of 0.0117. Based on these visual saliency scores, the system
decides that the user is referring to the house in the foreground and
updates the simulation accordingly. Figure 7 illustrates the state of the
system after this user input has been interpreted.

Clearly, however, not all ambiguous references can be resolved based
on visual salience. In some instances, the difference in the visual saliency
scores associated with each of the candidate referents is not sufficient to
allow the selection of a referent. Accordingly, as part of the interpre-
tation process for resolving ambiguous references, the SLI system
compares the saliency of the primary candidate referent and the other
candidates. If the saliency difference does not exceed a predefined
confidence interval, the system outputs a message to the user explaining
that it is unable to resolve the reference. In SLI scenarios, it is found
that when comparing normalised saliency scores, ranging from 0 to 1, a
confidence interval of 0.4 works well. This of course can be adjusted to
model a more or less stringent interpretation. Figure 8 illustrates a scene
with two houses that have equal visual saliency scores. In this instance,
both houses have a visual saliency rating of 1.0000 indicating that they
are the two most salient objects in the scene.

Taking Figure 8 as the visual context, if the user input involves an
ambiguous referring expression, such as make the house taller, the sys-

Figure 7. The state of the simulation after the SLI system has interpreted the under-
determined reference the house and processed the input make the house wider.
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tem is unable to resolve the reference. Figure 9 illustrates the state of the
system after this command has been interpreted.

Note that in Figure 9 the visual scene has not changed and the
message text box contains a message to the user explaining why the
system was unable to resolve the reference, as well as a listing of the
candidate referents the system restricted its search to: Required Saliency

Figure 8. A scene with two houses that have equal visual saliency scores.

Figure 9. The state of the SLI system after the system has output a message to the user

stating that the saliency differences between the candidate referents of an underdeter-
mined expression did not permit the system to resolve the reference.
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Interval Not Reached, Primary Candidate’s Saliency Confidence Insuffi-
cient, I �m not sure which house you mean, I think you mean: house 18
Normalised Salience= 1.0000 or house 17 Normalised Sal-
ience= 1.0000.

6. Conclusions

In this paper, a novel algorithm for modelling the visual salience of
objects in the view volume was developed. This model of visual atten-
tion is a new application and extension of a synthetic model of vision
that uses a graphics technique called false colouring (Noser et al., 1995).
Unlike alternative connectionist approaches, it does not require train-
ing. In the SLI project, the function of this visual attention model is to
capture the perceptual information flowing from the visual simulation
to the user. For a real-time NLVR system, the advantages of using this
visual salience algorithm are: (1) the algorithm is a core component that
allows the system to dynamically generate and update an evolving, lo-
cal, visual, interpretive discourse context for referring expressions; (2) in
many cases, the visual salience scores associated with the objects in the
context model allows the system to adjudicate between candidate ref-
erents when resolving underspecified or ambiguous references.

Notes

1 For an introduction to the early systems integrating language and vision see Maybury
and Wahlster (1998) and McKevitt (1995/1996).

2 For more information on the SLI project see http://www.mle.ie/� kelleherj.
3 A viewport is the rectangular area of the display window. It can be conceptualised as a
window onto the 3-D simulation.

4 The z-buffer stores for each pixel in the viewport the depth value of the object ren-

dered at that pixel.
5 In the current implementation the colour table contains 256 entries. Although this
restricts the number of objects that can be added to the world, this restriction is more

a matter of convenience than necessity as the colour table can be extended without
affecting the rest of the system.

6 An exophoric reference denotes an entity in the spatio-temporal surroundings that is
new to the discourse.
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